Journal of Organometallic Chemistry, 188 (1980) 25–52 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SILAETHENE

I. DARSTELLUNG UND CHARAKTERISIERUNG VON MONOSILACYCLOBUTANEN

N. AUNER und J. GROBE *

Eduard Zintl-Institut für Anorganische Chemie der Technischen Hochschule Darmstadt, Hochschulstrasse 4, D-6100 Darmstadt (B.R.D.)

(Eingegangen den 6. September 1979)

Summary

Monosilacyclobutanes of the type $RR'SiCH_2CH_2CH_2$ are prepared by ring closure reactions of 3-halopropylhalosilanes and by substitution of SiCl containing silacyclobutane rings with organometallic reagents (RMgX, LiR, NaCp). Under optimal experimental conditions yields between 50 and 95% can be obtained by both procedures. Characterization of the compounds is accomplished by analytical (C, H, N) and NMR, IR and mass spectroscopic investigations.

Zusammenfassung

Die Darstellung von Monosilacyclobutanen des Typs $RR'SiCH_2CH_2CH_2$ gelingt durch Ringschlussreaktion aus 3-Halopropyl-halogensilanen sowie durch Substitution mit metallorganischen Reagenzien (RMgX, LiR, NaCp) an geeigneten SiCl-haltigen Silacyclobutanringen. Durch Optimierung der experimentellen Bedingungen werden nach beiden Verfahren Ausbeuten zwischen 50 und 95% erzielt. Die Charakterisierung der Verbindungen erfolgt durch analytische (C, H, N) und spektroskopische (NMR, IR, Massen-Spektrum) Untersuchungen.

Einleitung

Sila- und Disilacyclobutansysteme finden in zahlreichen Arbeiten vornehmlich aus zwei Gründen grosses Interesse: 1. Silacyclobutane zeigen trotz ihrer mit Cyclobutanen vergleichbaren Ringspannung [1,2] eine höhere Reaktivität und sind sehr leicht spaltbare Substanzen. Durch gezielte Ringspaltung wird eine grosse Anzahl interessanter Verbindungen zugänglich. 2. Für die Unter suchung instabiler Verbindungen des Siliciums sind Sila- bzw. Disilacyclobutane geeignete Ausgangssubstanzen, da aus ihnen durch Pyrolyse [3,4] oder Photolyse [5-7] Silaethene mit Si= $C(p-p)\pi$ -Bindung erzeugt werden können.

Die intermediäre Bildung von Silaethenen wird bei den bisherigen Untersuchungen in der Regel durch Abfangreaktionen indirekt nachgewiesen. Unsere Bemühungen in diesem Bereich konzentrierten sich in den vergangenen Jahren auf die direkte spektroskopische Charakterisierung und die Stabilisierung von $R_2Si=CH_2$ durch Koordination an Übergangsmetallzentren. Die in diesem Zusammenhang durchgeführten Untersuchungen erfolgten auf einer breiten experimentellen Basis, um den Einfluss von Substituenten auf die Reaktivität der Silacyclobutane und auf die Stabilität der aus ihnen erzeugten Silaethene zu studieren. In der ersten Mitteilung dieser Reihe berichten wir über die Synthese von Derivaten des Monosilacyclobutans. In die zusammenfassende Beschreibung unserer Erfahrungen wurden auch Verbindungen mit aufgenommen, die in der Literatur beschrieben, aber spektroskopisch noch nicht vollständig charakterisiert sind.

Darstellung der Silacyclobutane

Monosilacyclobutane des Typs $R_2SiCH_2CH_2CH_2$ lassen sich nach zwei Verfahren darstellen: Zum einen durch Substitution von Halogen durch geeignete Reste R gemäss Gl. 1, zum anderen durch Ringschlussreaktionen nach Gl. 2 aus 3-Halopropylhalogensilanen.

Für die Gewinnung von Derivaten mit organischen Resten R am Silicium verdient das Verfahren nach Gl. 1 den Vorzug, da bei dem zweiten Syntheseweg vor allem bei Verwendung sperriger Substituenten Probleme bei der Ringschlussreaktion auftreten [8]. Ausserdem ergeben sich Schwierigkeiten bei der Synthese der Halopropyl-halogensilane durch den in Konkurrenz zur Addition beobachteten Halogen/Wasserstoff-Austausch [9-11].

1. Darstellung der Silacyclobutane $Me_nCl_{2-n}\dot{S}iCH_2CH_2CH_2$ (n = 0-2)

Die Derivate $Me_n Cl_{2-n}SiCH_2CH_2CH_2$ sind als Schlüsselverbindungen für die Synthese weiterer Derivate und/oder für den Übergang in die 1,3-Disilacyclobutanreihe von Bedeutung. Die Literaturmethoden waren daher unter dem Aspekt der Synthese grösserer Substanzmengen zu optimieren.

1.1. Ringschlussreaktionen mit γ -Halopropylchlorsilanen. γ -Halopropylchlorsilane lassen sich nach Literaturangaben [9,12] generell gemäss Gl. 3 darstellen und durch Umsetzung mit Magnesium nach Gl. 4 in 25–84% iger Ausbeute in die entsprechenden Monosilacyclobutane überführen [13].

$$Me_{n}Si_{Cl_{3-n}} + H_{2}C = CHCH_{2}X - \frac{H_{2}PtCl_{6}}{\Delta} - Me_{n}Cl_{3-n}SiCH_{2}CH_{2}CH_{2}X \quad (3)$$

$$Me_{n}Cl_{3-n}SiCH_{2}CH_{2}CH_{2}X \xrightarrow{+Mg} Me_{n}Cl_{2-n}Si \xrightarrow{+MgClX} (4)$$

Die Variation des Verfahrens betrifft folgende Parameter:

- 1. Verwendung von γ -Brompropyl-chlorsilanen anstelle von γ -Chlorpropylchlorsilanen [9,14,15],
- 2. Aktivierung der Oberfläche des eingesetzten Magnesiums (a) durch mechanische Erzeugung frischer oder grosser Oberflächen (Mg-Puder) [9,16–18], (b) durch chemische Behandlung mit Iod [15] oder 1,3-Dibromethan [19],
- 3. Verwendung verschiedener Lösungsmittel (THF oder Diethylether) [9,20],
- 4. Lösungsmittelmenge und Ausnutzung des Verdünnungsprinzips [19]. Allen Arbeiten gemeinsam ist die Durchführung der Reaktion in kleinen Ansätzen (maximal 0.25 Mol γ -Halopropyl-chlorsilan). Auf Grund der eigenen Untersuchungen lassen sich bei 3-molaren Ansätzen Ausbeuten bis zu 80%
- an Silacyclobutan erzielen, wenn folgende Bedingungen erfüllt sind:
- 1. Verwendung von γ -Chlorpropyl-chlorsilanen,
- 2. Verwendung von Magnesium-Puder,
- 3. Aktivierung des Magnesiums und Starten der Grignardreaktion mit 1,3-Dibromethan oder Methyliodid,
- 4. Durchführung der Cyclisierung in relativ geringen Mengen Diethylether als Lösungsmittel (ca. 21 für 3 Mol Silan),
- 5. Eintropfen des Gemisches Silan/Ether in eine Suspension von Magnesium in wenig Ether bei der Siedetemperatur (35°C) des Lösungsmittels in relativ kurzer Zeit (ca. 6 h),
- 6. Weiteres Rühren der Reaktionsmischung unter Rückfluss über 24 h und Abkondensieren der flüchtigen Bestandteile (Silacyclobutan und Ether) vom Magnesiumsalz (keine Hydrolyse!).

Die Synthese der γ -Halopropyl-chlorsilane Me_nCl_{3-n}SiCH₂CH₂CH₂X erfolgt nach der durch Gl. 3 beschriebenen katalytischen Addition von Methylchlorsilanen Me_nCl_{3-n}SiH an Allylhalogenide. Auf eine detaillierte Beschreibung wird hier verzichtet; die Ergebnisse werden tabellarisch zusammengefasst (s. Tab. 11). Die spektroskopischen Daten (¹H-NMR und IR) sind in den Tabellen 1 und 2 wiedergegeben.

Verbindungen der Reihe Me_nCl_{3-n}SiCH₂CH₂CH₂X sind durch ¹H-NMR-Spektren des Typs A₂B₂M₂ charakterisiert. Die Signale der Brompropylgruppe sind gegenüber denen der Chlorpropylsilane zu höherem Feld verschoben. Der Grund dafür liegt in der geringeren Elektronegativität des Broms. Die Hochfeldverschiebung fällt für die unmittelbar benachbarten γ -Methylenprotonen besonders gross aus. Die Resonanzen der α - und β -Methylengruppe erscheinen als komplexe Multipletts, während für die γ -CH₂-Gruppe generell ein Triplett beobachtet wird, das auf die Kopplung mit den benachbarten β -CH₂-Protonen zurückgeht.

TABELLE 1

¹H-NMR-SPEKTREN DER γ -HALOPROPYLCHLORSILANE Me_nCl_{3-n}SiCH₂CH₂CH₂X (X = Cl, Br; n = 0-3) a

Verbindung	δ(H) [ppm	1]			Jγ (Hz)
	Me	α-CH ₂	β-CH ₂	γ-CH ₂	
Cl ₃ SiCH ₂ CH ₂ CH ₂ Cl		1.36 (M)	1.88 (M)	3.36 (3)	6.0
Cl ₃ SiCH ₂ CH ₂ CH ₂ Br		1.14 (M)	1.74 (M)	2.96 (3)	6.1
MeSiCl2CH2CH2CH2Cl	0.65 (1)	1.09 (M)	1.84 (M)	3.38 (3)	6.0
MeSiCl2CH2CH2CH2Br	0.79 (1)	1.07 (M)	1.78 (M)	3.05 (3)	6.5
Me2SiClCH2CH2CH2Cl	0.24 (1)	0.67 (M)	1.69 (M)	3.24 (3)	6.0
Me ₂ SiClCH ₂ CH ₂ CH ₂ Br	0.25 (1)	0.65 (M)	1.71 (M)	3.06 (3)	7.0

^a Lösungsmittel: C_6D_6 (ca. 30% ige Lösung); Innerer Standard: C_6H_6 ; Angaben in (): Multiplizität des Signals; (M) = kompliziertes Multiplett.

Auch die Bedingungen und Ergebnisse der Silacyclobutansynthesen werden tabellarisch (Experimentelles, Tab. 12) zusammengefasst. Die bei der destillativen Aufarbeitung der Reaktionsgemische erhaltenen Rückstände bestehen aus nicht umgesetztem γ -Halopropyl-chlorsilan und schwerflüchtigen Oligomeren. Die Charakterisierung der Silacyclobutane gelingt durch spektroskopische (¹H-NMR, IR, und Massen-Spektren) und analytische Untersuchungen (Tab. 14). Die NMR-Daten sind der Literatur [19] zu entnehmen, die IR- und Massen-Spektren-Daten werden in einer späteren Mitteilung im Zusammenhang mit der spektroskopischen Untersuchung der Pyrolyseprodukte diskutiert.

Wegen interessanter Struktur- und Substituenteneffekte werden die Protonenresonanzspektren (Tab. 3) als Beispiele für alle weiteren Derivate kurz besprochen. Allgemein lässt sich die Struktur von Silacyclobutanen durch Fig. 1 darstellen. Sie lässt erkennen, dass die chemisch äquivalenten Protonen H_A und H_A bzw. H_B und H_{B'} magnetisch nicht äquivalent sind. Für die Protonen der drei Methylengruppen sind daraus NMR-Spektren des Typs AA'BB'MM' zu folgern. die komplizierten Kopplungsgesetzen gehorchen. Ein vergleichsweise einfaches Spektrum wird für das 1,1-Dimethyl-1-silacyclobutan erhalten. Neben einem Singulett für die Methylprotonen enthält das Spektrum ein Triplett bei $\delta_{\rm H}$ 1.01 ppm für die dem Si benachbarten CH₂-Gruppen und ein Quintett bei δ_{H} 2.13 ppm für die mittlere Methylengruppe. Beide Multipletts zeigen eine schlecht aufgelöste Feinstruktur, die auf den komplexen Charakter des Spinsystems hinweist. Im ¹H-NMR-Spektrum des 1,1-Dichlor-1-silacyclobutans erscheinen die Resonanzen aller drei CH₂-Gruppen bei etwa 1.6 ppm als kompliziertes Multiplett. Die chemische Umgebung wird in diesem Fall durch den Einfluss der Chlorsubstituenten für alle Protonen angenähert gleich; aus dem AA'BB'MM'-Spinsystem wird dadurch ein AA'BB'CC'-Typ mit zufälliger Entartung einiger Resonanzen. Aus dem experimentellen Spektrum können daher die Kopplungskonstanten nicht direkt abgeleitet werden. Noch komplizierter werden die Spektren, wenn die Substituenten R am Silicium am Kopplungsmechanismus beteiligt sind, z.B. für R = H oder F. Die hier kurz angesprochenen Effekte gelten für alle in dieser Arbeit beschriebenen Silacyclobutane. In den meisten Fällen gelingt zwar die Zuordnung der Signale zu den verschiedenen CH₂-Gruppen,

Cl ₃ Si(CH ₂) ₃ Cl	Cl ₃ Si(CH ₂) ₃ Br	MeSiCl ₂ (CH ₂) ₃ Cl	MeSiCl2(CH2)3Br	Me2SICI(CH2)3CI	Me ₂ SiCl(CH ₂) ₃ Br	Zuordnung
3108 (br)	3068 s	3211 (br)		3018 (br)		ν(CH ₂)
2964 m	2908 m	2957 m	2966 m	2960 88	2900 ⁸³	•
	2848 w		2888 m	2777 B		ν _{αα} a (CH ₃)
1467 w	1437 8	1458 w	1433 m	1457 m	1451 w	
1438 m	1409 w	1435 m	1401 m	1431 m	1432 m	
1397 m	1389 w	1403 w		1411 m	1408 m	δ(CH ₂)
1348 w	1362 m	1349 w	1339 w	1345 w	1343 w	
1314 m	1303 s	1312 m	1298 m	1309 m	1298 m	6(CH3)
1269 m		1264 s	1262 s	1256 s	1261 s	
1237 w	1243 88		1241 s		1240 s	
1165 s	1156 s	1159 w		1176 w, 1168 m	1169 w.1150 m	
1115 8		1112 w		1114 w	-	
1068 a	1100 m	1063 m	1098 br	1061 m	1090-	Kombi-
1036 s	1042 w	1042 m	1043 (br)	1055, 1023 m	1040 ^{8, br}	nations und
995 s	996 w	996 m		1009 w		Deformations-
						schwingungen
997 w	996 m, 925 w	964 w		966 w	975 m, 949 w	
911 m	002 m	910 m	900 w	919 w	902 w	γ.ρ(CH3),
860 m	867 m	862 m, 811 s	850 m	868 s, 849 s	849 s	p(CH2)
786 m	771 s	788 ^{BB}	787 85	805 ss, 789 s	804 s, 786 ss	ì
752 8		748 m	764 8	765 m	-	
730 m	731 m				740 s	v(CCl), v(CBr)
707 s				703 m		
703 m	698 ss	680 m	694 w		677 m	Vac(SICa)
		665 w		638 m		v.(SiC3)
589 ₈₈	597 ss					5
562 ss	565 85		564 m			
	530 m	537 ss	530 s			
487 s	483 8	477 B	469 m	4728	477 B	v(SiCI)
468 m	463 5					

IR-DATEN DER γ -HALOPROPYLSILANE Men Cl_{3-n}SiCH₂CH₂CH₂X^a

TABELLE 2

^a Die Proben wurden in kapillarer Schichtdieke als Reinsubstanzen zwischen KBr-Fenstern vermessen. Intensitäten: w = schwach, m = mittelstark, s = stark, ss = schr stark, (br) = breit.

I T AND ADDITED DIT DDD	STANDART A ASTAT ADDIMANTA STA ST. AL	$-\alpha_{1}\alpha_{1}\alpha_{1}\alpha_{1}\alpha_{1}\alpha_{1}\alpha_{1}\alpha_{1}$
ILLNING CORKINEN THE	* AND NOTSTEAL YES FIRST AND AND AND TO	• SICHACHACHAC7 = 11-21

Verbindung	δ(H) [ppm	2]		$J_{lphaeta}$ (Hz)		Bemer-
	Me	α-CH2	β-СH2	α-CH ₂	β-CH ₂	Kungen
Cl ₂ SiCH ₂ CH ₂ CH ₂		1.62 (M)	1.62 (M)			J nicht bestimm- bar
MeClSiCH2CH2CH2	0.27 (1)	0.93 (M)	2.05 (5)		8.0	
Me2SiCH2CH2CH2	0.19 (1)	1.01 (3)	2.13 (5)	8.0	8.0	

^a Lösungsmittel: C_6D_6 ; ca. 30% ige Lösungen. Innerer Standard: C_6H_6 Angabe in (): Multiplizitäten; (M) = komplexes Signal höherer Ordnung.

nicht aber die Ermittlung der Kopplungskonstanten.

1.2. Verwendung von 1,3-Di-Grignardverbindungen. Die unter 1.1 diskutierte Ringschlussreaktion setzt die Darstellung der γ -Halopropylchlorsilane voraus. Wegen des grossen Bedarfs an Silacyclobutanen für die Pyrolyseversuche wurde deshalb nach güntigeren Synthesewegen gesucht. Als besonders geeignete Alternative erschien die Eintopf-Reaktion gemäss Gl. 5:

$$\begin{array}{c} x - CH_2 \\ CH_2 + 2 Mg \\ x - CH_2 \end{array} \xrightarrow{Et_2O} CH_2 + 2 Mg \\ THF \\ THF \\ x Mg - CH_2 \end{array} \xrightarrow{K^1 R^2 SiCl_2} R^1 R^2 Si$$
(5)

Trotz Variation der Reaktionsbedingungen in einer Vielzahl von Experimenten blieben alle Bemühungen, die 1,3-Di-Grignard-Verbindung in guter Ausbeute darzustellen, ohne Erfolg. Dass an dieser Stelle des Syntheseweges das eigentliche Problem zu suchen ist, geht aus einer vor kurzem erschienenen Arbeit von Costa und Whitesides [21] hervor, die die Grignard-Verbindung BrMg(CH₂)₃-MgBr auf dem Umweg über die Quecksilberverbindung RHg(CH₂)₃HgR darstellen und in guter Ausbeute mit Diphenyldichlorsilan zum Silacyclobutanring umsetzen konnten. Dieser Syntheseweg hat allerdings gegenüber dem zweistufigen Prozess der Bildung und der Ringschlussreaktion von γ -Halopropylchlorsilanen keinerlei Vorteile.

Fig. 1. Struktur von Silacyclobutanen.

2. Darstellung von Silcacyclobutanen aus Cl₂SiCH₂CH₂CH₂und MeClSiCH₂CH₂CH₂ durch Substitutionsreaktionen

Wie weiter oben erwähnt, sind die beiden chlorsubstituierten Silacyclobutane Cl₂SiCH₂CH₂CH₂ und MeClSiCH₂CH₂CH₂ geeignete Ausgangsverbindungen für die Darstellung zusätzlicher Derivate. Einer Überblick über die Synthesemöglichkeiten, die diese beiden Schlüsselsubstanzen bieten, vermitteln die in den Fig. 2 und 3 wiedergegebenen Reaktionsschemata. Sie sollen gleichzeitig als Wegweiser für die im folgenden beschriebenen Substitutionsreaktionen dienen.

2.1. Substitution von Cl durch organische Reste R. Alkylsubstituierte Silacyclobutansysteme sind in glatter Reaktion durch Umsetzung der Chlorderivate mit Alkyllithium oder Alkyl-Grignard-Verbindungen nach Gl. 6 zugänglich:

$$\begin{array}{ccc} Me(Cl)SiCH_2CH_2CH_2 + & RLi \longrightarrow Me(R)SiCH_2CH_2CH_2 + & LiCl & (6a) \\ & oder RMgX & oder MgXCl \end{array}$$

 $Cl_{2}SiCH_{2}CH_{2}CH_{2}CH_{2} + 2 RLi \longrightarrow R_{2}SiCH_{2}CH_{2}CH_{2} + 2 LiCl$ (6b) oder 2 RMgX oder 2 MgXCl

Substitutionsreaktionen von R_2SiCl_2 -Verbindungen mit organometallischen Reagentien sind durch Variation der Bedingungen nur bedingt steuerbar. Dabei spielen drei Faktoren eine besondere Rolle: (a) die Reaktionstemperatur, (b) die Vermeidung lokaler Reagenzüberschüsse durch Arbeiten in hoher Verdünnung und durch gute Durchmischung, und (c) stöchiometrische Bedingungen und langsames Eintropfen der Organometallverbindung zum Chlorsilan.

Fig. 2. Reaktionsschema: Substitutionsreaktionen des 1-Methyl-1-chlor-1-silacyclobutans.

Fig. 3. Reaktionsschema: Substitutionsreaktionen des 1,1-Dichlor-1-silacyclobutans.

Unsere Erfahrungen bei der Synthese der verschiedensten Silacyclobutansysteme führen zu folgenden allgemeinen Aussagen:

1. Methylierungsreaktionen mit LiCH₃ oder CH₃MgX (X = Cl, Br) liefern immer ein Gemisch von Substitutionsprodukten. Selbst bei Verwendung einer grossen Lösungsmittelmenge und sehr langsamem Zutropfen des Grignard-Reagenzes kann das Monosubstitutionsprodukt Me(Cl)SiCH₂CH₂CH₂ nur bis zu einem Anteil von 70% im Produktgemisch angereichert werden. Die Reaktion läuft erst bei Temperaturen oberhalb -10° C mit akzeptabler Geschwindigkeit ab und führt schon bei $T > 10^{\circ}$ C zu erheblichen Anteilen (ca. 50%) der Dimethyl-Verbindung Die destillative Auftrennung des Gemisches aus Cl₂SiCH₂CH₂CH₂, Me(Cl)- $SiCH_2CH_2CH_2$ und $Me_2SiCH_2CH_2CH_2$ ist nur mit Hilfe einer Drehbandkolonne möglich. Die selektive Monomethylierung hat noch geringere Aussichten bei Verwendung von Methyllithium. Selbst bei –78°C bildet sich bevorzugt das Disubstitutionsprodukt. Dieses entsteht praktisch quantitativ, wenn man LiCH₃ in geringem Überschuss einsetzt. Diese hohe Ausbeute steht im Widerspruch zu Angaben in der Literatur, nach denen Silacyclobutane bei Raumtemperatur mit Organolithium-Verbindungen unter Ringspaltung reagieren [13,22]. Solche Spaltungen wurden bei unseren Untersuchungen nicht beobachtet. Auch Jutzi [23] konnte kürzlich zeigen, dass selbst sperrige Gruppen wie Mesityl und

t-Butyl in hoher Ausbeute unter Erhalt des Ringgerüstes als Substituenten am Si eingeführt werden können.

2. Die selektive Vinylierung des $Cl_2SiCH_2CH_2CH_2$ zu Vi(Cl)SiCH_2CH_2CH_2 ist selbst bei sehr hoher Verdünnung und niedriger Temperatur (-78°C) nicht möglich. Man erhält etwa 1/1/1-Gemische von Ausgangsverbindung, Mono- und Disubstitutionsprodukt, die sich destillativ nur unter grossem Zeitaufwand auftrennen lassen. Daher wird für die Synthese des 1-Vinyl-1-chlor-1-silacyclobutans ein Dreistufen-Prozess verwendet, der auf der selektiven Einführung und der leichten Abspaltbarkeit einer Me₂N-Gruppe basiert (s. Abschn. 2.2).

3. Phenylierungen sind präparativ gut steuerbar, so dass die selektive Einführung eines Phenylrestes bei 0°C in guter Ausbeute möglich ist. Die Zweifachsubstitution erfordert hier eine drastische Verschärfung der Reaktionsbedingungen, z.B. längeres Erhitzen der Mischung auf 35-40°C oder Steigerung der Temperatur auf 110°C durch Ersatz des Ethers durch ein höher siedendes Lösungsmittel wie Toluol.

4. Die Umsetzung von 1,1-Dichlor-1-silacyclobutan mit Cyclopentadienylnatrium führt bei 64°C (Sdp. des THF) praktisch ausschliesslich zum Monosubstitutionsprodukt $Cp(Cl)SiCH_2CH_2CH_2$. Die Einführung eines zweiten Cp-Restes gelingt nur bei Verwendung von Cyclopentadienyl-Grignard-Reagenz und bei Temperatursteigerung auf ca. 115°C durch Ersatz von THF durch Toluol.

Der Grund für die beobachteten Unterschiede bei Substitutionsreaktionen des $Cl_2SiCH_2CH_2CH_2$ liegt in der Grösse der Substituenten. Methyl- und Vinylgruppen haben einen vergleichsweise geringen Raumbedarf und sind daher nicht selektiv gegen Chlor am Si-Atom auszutauschen. Der Phenylrest ist zwar wesentlich voluminöser, wegen seiner Planarität aber sterisch noch relativ günstig. Unter Verschärfung der Reaktionsbedingungen ist deshalb die Zweitsubstitution möglich. Nach Wannagat [24] gelingt sogar die Einführung dreier Phenylgruppen in RSiCl₃-Verbindungen, wenn die Reaktionstemperatur längere Zeit auf etwa 100°C gehalten wird. σ -Gebundene Cyclopentadienylreste sind nicht planar; ihr Platzbedarf ist folglich deutlich grösser als der planarer Phenylgruppen. Dies macht die selektive Monosubstitution bei milden Bedingungen verständlich.

Einzelheiten zur Darstellung der verschiedenen Derivate des Monosilacyclobutans sind im Exp. Teil (Tab. 13) zusammengefasst. Zur Charakterisierung der Verbindungen werden die üblichen spektroskopischen Methoden (¹H-NMR, IR, MS) und die Elementaranalyse (C, H) herangezogen. Diese Untersuchungen beweisen Zusammensetzung und Struktur der Derivate und garantieren die Reinheit der Produkte. Die ermittelten Daten sind in Tab. 4 (¹H-NMR), 5 (IR) und 6 (Massen-Spektrum) zusammengestellt. Die Ergebnisse der Verbrennungsanalysen finden sich im Exp. Teil (Tab. 14).

Die Diskussion der spektroskopischen Ergebnisse konzentriert sich auf einige besondere Phänomene, die als Funktion bestimmter Substituenten beobachtet werden.

Phenylsubstituierte Silacyclobutane zeigen in CCl₄ als Lösungsmittel stark konzentrationsabhängige ¹H-NMR-Spektren. Solche Effekte sind bei Verwendung von Benzol als Lösungsmittel ausgiebig studiert worden und sind der diamagnetischen Anisotropie des aromatischen Systems zuzuschreiben [25,26]. Die resultierende Abschirmung kann sich auf verschiedene Protonensignale einer

R ¹	R ²	δ _H (ppm)				J_{αβ} (Hz)
		R1	R ²	α-CH ₂	β-CH ₂	
Ме	Vi	0.33 (1)	5.93 (M)	1.04 (M)	2.05 (5)	7.8
Ме	Ph	0.42 (1)	7.38 (M)	1.09 (M)	2.21 (5)	8.3
Me	Ср	0.00 (1) ^a	5.94 (M)	1.00 (3)	2.02 (5)	8.0
Vi	Vi	6.09 (M)	6.09 (M)	1.03 (3)	2.14 (5)	8.1
Ph	Ph	7.38 (M)	7.38 (M)	0.80 (3)	1.3 (M)	8.0
?h	Cl	7.43 (M)		1.60 (M)	2.07 (M)	b
Ср	Cl	5.94		1.46 (M)	2.21 (M)	ь
Ph	Vi	7.42 (M)	6.18 (M)	1.33 (3)	2.19 (5)	8.0
Ср	Vi	6.07 (M)	6.1 (M)	0.98 (M)	2.02 (M)	ь

^a Weiteres Me-Signal bei δ 0.34 ppm wahrscheinlich durch Wechselwirkung mit dem benachbarten Cp. ^b $J_{\alpha\beta}$ nicht zu ermitteln.

Verbindung verschieden stark auswirken. In Analogie zu diesem Lösungsmitteleinfluss des Benzols lassen sich die beobachteten Verschiebungen von Protonensignalen bei den phenylsubstituierten Silacyclobutanen durch die Wechselwirkung mit den Phenylgruppen erklären. Im Gegensatz zum Benzol sind hier prinzipiell zwei Einflüsse möglich: die inter- und die intramolekulare Wechselwirkung. Bei ausreichender Verdünnung dürfte nur die intramolekulare Abschirmung von Bedeutung sein. Fig. 4 zeigt das Protonenresonanzspektrum des 1-Methyl-1-phenyl-1-silacyclobutans in CCl₄-Lösung. Die intramolekulare Wechselwirkung zwischen Phenyl- und Methylgruppe ist formelmässig skizziert.

Solche intramolekularen Abschirmungseffekte sind z.B. in cis-Olefinen des Typs A für die Hochfeldverschiebung des Signals der Si $(CH_3)_3$ -Gruppe verantwortlich und erlauben eine einfache Unterscheidung von den trans-Verbindungen [27]. Auch bei den beiden Konfigurationsisomeren des 1.2-Dimethyl-1-silacyclobutans werden intramolekulare Abschirmungseffekte der Ringsubstituenten diskutiert [28].

Als zweites Phänomen sei hier die aus der Literatur [29] bekannte Fluktuation von Cyclopentadienvlderivaten angesprochen, die in einer raschen sigmatropen 1,5-Übertragung des R₃Si-Restes besteht und mit der geringen Si-Cp-Bindungsenergie von 209.3 kJ/mol erklärt wird. Dieser Aspekt ist für das Pyrolyseverhalten von Cyclopentadienylsilacyclobutanen von Bedeutung.

Eines besonderen Hinweises bedarf schliesslich die Beobachtung, dass in den routinemässig aufgenommenen Massenspektren für Cyclopentadienyl-, Vinyl-

TABELLE 4

		^	>	>	>	>	>	>	9
2060 2005 2070 <th< td=""><td>3013 w</td><td>3061 m</td><td>3049 s</td><td>3076 m</td><td>3048 s</td><td>3105 w</td><td>3005 w</td><td>3055 m</td><td></td></th<>	3013 w	3061 m	3049 s	3076 m	3048 s	3105 w	3005 w	3055 m	
2010 2010 <th< td=""><td>2968 w</td><td>2960 s</td><td>2054 88</td><td>2972 s</td><td>2970 55</td><td>2061 s</td><td>2965 as</td><td>2970 58</td><td>·</td></th<>	2968 w	2960 s	2054 88	2972 s	2970 55	2061 s	2965 as	2970 58	·
400000 500000	2015 B 2020 m	2900 W		2930 5	2924 88	2921 s	2934 BS	2929 8	(11U)
	111 0707	2012 III 2970 w	ш 107	A 01 07	E 0/07		2667 m	E 0/07	p(CH)
1444 w 1457 w 1438 w 1448 w 1446 w 1446 w 1467 w 1466 w 1467 w 1466 w 1467 w 1466 w	1576 w		1690 m	1692 m	1588 m	1617,w	1690 w	1691 m	v(C=C)
	1444 W	1467 w	1433 W	1488 m	1482 m	1467 w	1448 w	1467 w	v(C-C aromat.)
		1430 s		1431 8	1428 s		1436 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400 m	1403 m	1401 s	1394 m	1402 s	1393 m	1389 w	1403 8	
		1324 w		1338 w			1317 w	1363 W 1337 w	(CHO)
				1306 w					17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1247 m	1265 5		1266 w	1253 w	1248 s	1229 w	1248 m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.216 w				1204 w			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1197 w		1182 w	1183 w	1181 w		1176 w	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1117 m	1113 55	1116 w	1122 8	1110 ss	1120 5	1122 s	1123 s	v(Ring)
		1060 55	1061 w	11148		1092 w	1077 s, 1057 s	1059 m	
		1024 m				1063 m	1037 m, 1021 m		
	1009 w, 997 m	096 m	1005 s	997 w	1006 s			1006 s	$\rho, \gamma(CH_2)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	956 0		954 s		968 s	970 s, 952 s		953 s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	923 m	921 w		928 w	924 w	933 w	919 w	920 w	
8778 8663 806 m 857 m 852 s 855 s 855 s 858 s 851 m 855 s 853 m 855 s 851 m 855 s 858 s 851 m 855 s 810 w 817 s 810 w 817 s 820 w 810 s 810 w 817 s 820 w 810 s 810 w 817 s 820 w 810 s 810 w 817 s 820 w 810 s 810 w 810 s 820 w 810 s 736 s 736 s 736 s 810 w 776 s 737 m 718 s 737 m 718 s 737 m 718 s 737 m 756 m 801 w 801 w 801 w 801 w 801 m 802 s 801 w 801 m 802 s 801 m 800 m 801 m 8000 m 8000 m 800 m 800 m 800 m 8000	904 s	894 w		892 w	895 w	896 m		890 m	
	877 s								
822 8 817 8 817 8 820 W 819 W 718 736 8 01 W 718 735 7 $776 \mathrm{m}$ 716 M 756 M 731 8 73 3 5 757 $776 \mathrm{m}$ 718 8 73 7 $776 \mathrm{m}$ 718 M 756 M 756 M 723 5 73 m 718 M 725 8 697 35 698 5 698 5 737 m 718 M 725 6 692 5 737 m 718 M 725 8 697 5 693 5 737 m 718 M 725 8 692 5 737 m 718 M 726 8 692 5 737 m 718 M 726 8 692 5 737 m 718 M 726 8 692 m 725 8 692 5 737 m 718 M 726 8 692	866 s	866 m	857 m	852 s	855 s	868 8	851 m	855 s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	822 s	817 s				820 w		819 w	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	790 s	786 8				783 s		801 w	<pre>&(Ring)</pre>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	771 8						754 w	766 m	
	723 s	733 55	720 85	737 m	738 s	738 s	737 m, 718 m	725 5	
	601 m	697 85		697 ss	698 ss		705 8	692 88	v(SIC)
656 s 616 w 616 w 574 s 574 s 574 s 574 s 574 s 574 s 574 s 530 w 480 w 480 w 477 m 410 m	689 m	673 m				686 s	681 m	662 m	
616 w 514 s 574 s 530 w 6 (Ring) 493 m 462 m 506 m 450 w 480 w 480 w 456 w 456 w	656 s			663 w					
574.s 574.s 574.s 540 w 540.s 557 m 574.s 493 m 462 m 506 m 480 w 477 m 410 m 456 w	616 w								
540 w 540 s 557 m 530 w 5 (Ring) 493 m 462 m 506 m 480 w 480 w 477 m 410 m 410 m 456 w 456 w							574 s		
493 m 462 m 506 m 490 w 480 w 477 m 410 m 456 w		1	540 w	540 s	567 m			630 w	6 (Ring)
477 m 410 m 456 w		493 m		462 m		506 m		480 w	
		477 m		410 m			456 w		

TABELLE 5. IR-SPEKTREN ALKYLSUBSTITUIERTER MONOSILACYCLOBUTANE IM BEREICH VON 4000 BIS 400 cm⁻¹ a

36

TABELLE 6

MASSENSPEKTROMETRISCHE FRAGMENTIERUNG ALKYLSUBSTITUIERTER MONOSILACYCLOBUTANE $^{\alpha}$

- .

Verbindung	Summenformel der positiven Ionen	m/e	(sinnvolle Molekülstruktur) ⁺	rel. Intensitäte: [%]
		- <u></u>		
Me(Vi)SiCH ₂ CH ₂ CH ₂	C ₆ H ₁₂ Si	112	M	18.11
	C5H9Si	97	ViSiCH ₂ CH ₂ CH ₂	38.53
	C4H9Si	85	MeSiCH ₂ CH ₂ CH ₂	27.85
	C4H8Si	84	Me(Vi)Si=CH ₂	100
	C3H7Si	71	Me(Vi)SiH	39.50
	C3H5Si	69	ViSi=CH ₂	39.83
	C ₂ H ₅ Si	57	MeSi=CH ₂	92.05
	C ₂ H ₃ Si	55	ViSi	44.30
	*	53	*	21.10
	*	45	*	31.90
	CH ₃ Si	43	CH ₃ Si	94.50
	SiHA	32	SiH4	84.00
	C_2H_4	28	H ₂ C=CH ₂	100
Me(Ph)SiCH2CH2CH2	C ₁₀ H ₁₄ Si	162	М	16.39
	C ₈ H ₁₀ Si	134	Me(Ph)Si=CH ₂	100
	C ₇ H ₈ Si	120	Me(Ph)Si	18.38
	C ₇ H ₇ Si	119	PhSi=CH ₂ ; [(Me(Ph)Si) - H)	75.04
	CeHeSi	105	PhSi	67.67
	*	93	*	18.58
	* .	91	+	16.00
	*	67	*	11 20
	C-H-Si	57	Masicolia	9 9 2
	C-U-	49	CH-CH-CH-	22.40
	C ₂ H ₄	28	$H_2C=CH_2$	90.00
VisSiCH-CH-CH-	C-H-si	194	Lf.	10.90
1201011201120112	*	100	*	10.29
	C.H.S.	109	The off off off	40.17
	CSH951	97	ViSiCH2CH2CH2	29.97
	C5H851	96	V12S1=CH2	100
	C5H7Si	95	$[Vi_2Si=CH_2) - H]$	58.38
	C4H7Si	83	Vi(CH ₂)Si=CH ₂	53.88
	C ₄ H ₆ Si	82	Vi ₂ Si	30.04
	C ₄ H ₅ Si	81	Rekombination	37.70
	C3H4Si	68	[(SiCH ₂ CH ₂ CH ₂) – 2 H]	41.85
•	C ₂ H ₃ Si	55	ViSi	97.85
	C3H	43	CH ₂ CH ₂ CH ₃	63.72
	SiH4	· 32	SiH4	32.00
	C_2H_4	28	H ₂ C=CH ₂	100
	C ₃ H ₆ Si	70	SiCH ₂ CH ₂ CH ₂	58.32
Ph2SiCH2CH2CH2	C ₁₅ H ₁₆ Si	224	М	14.06
	C ₁₃ H ₁₂ Si	196	Ph ₂ Si=CH ₂	100
	C ₁₂ H ₁₁ Si	183	Ph ₂ SiH	17.02
	C ₁₂ H ₉ Si	181	[(Ph ₂ Si) - H)]	53.35
	C ₆ H ₅ Si	105	PhSi	63.78
	C ₄ H ₅	53	Rekombination	23.95
Ph(Vi)SiCH ₂ CH ₂ CH ₂	C ₁₁ H ₁₄ Si	174	M	41.19
	C12H10	154	Ph ₂	29.69
	CoHIOSi	146	Ph(Vi)Si=CH2	100
	CeHaSi	131	Ph(Vi)Si	73 78
	CalleSi	120	Ph(Me)Si	37.06
-	CeHeSi	105	PhSi	300
	-0	100		100

TABELLE 6 (Fortsetzung)

Verbindung	Summenformel der positiven	m/e	(sinnvolle Molekülstruktur) ⁺	Rel. Intensitäten [%]
	Ionen	· · · ·		
	C ₃ H ₅ Si	69	ViSi=CH ₂	5.80
	C ₃ H ₄ Si	68	$[(ViSi=CH_2) - H)]$	14.83
	C ₂ H ₃ Si	55	ViSi	52.13
	C ₃ H ₇	43	CH2CH2CH3	28.13
	SiHA	32	SiHa	19.00
	C ₂ H ₄ , Si	28	C ₂ H ₄ , Si	100
* Me(Cp)SiCH2CH2CH2	CoH14Si	150	M	4.71
	C ₈ H ₁₁ Si	135	CpSiCH ₂ CH ₂ CH ₂	1.02
	C7H10Si	122	MeCpSi=CH ₂	12.71
	CeHaSi	108	MeCpSi	1.56
	C4H2Si	107	CpSi=CH ₂	6.76
	CeHeSi	93	CnSi	5.91
	CAHASI	25	MaSiCHaCHaCHa	6.89
	C-II-	65	MeSich201120112	100
	Collo	30		20.02
	C3H3	49 49	$H_2 C = C H_2$ Si	37.52
	02114.51	20	H ₂ C-CH ₂ , SI	34.12
* Cp(Cl)SiCH2CH2CH2	C ₈ H ₁₁ ClSi	170	М	22.02
	C7H7CISi	142	CpClSi=CH ₂	48.99
	CeH11Si	135	CpSiCH ₂ CH ₂ CH ₂ CH ₂	26.32
	CeHaSi	107	CpSi=CH ₂	35.36
	CaHeCISi	105	CISICHaCHaCHa	20.90
-	CeHeSi	93	CnSi	35.97
	CAHASI	70	SiCaHa	53 25
	CHaCISi	78	CISICH	21 02
	CISCH-	77	CISI-CH-	21.52
	C-U-	66	Cisi-Ch2	100
	Colle	65	Cp C-H-	22.87
	C5H5	60	05115	32.01
		6 3.		83.12
		39	C3H3	72.50
	C2H4, 51	26	H ₂ C=CH ₂	31.08
* Cp(Vi)SiCH ₂ CH ₂ CH ₂	C ₁₀ H ₁₄ Si	162	M	9.03
	C ₈ H ₁₁ Si	135	CpSiCH ₂ CH ₂ CH ₂	13.20
	C ₈ H ₁₀ Si	134	CpViSi=CH ₂	17.20
	C ₆ H ₇ Si	107	CpSi=CH ₂	31.31
	C6H6Si	106	CpSi=CH	22.47
	C ₆ H ₅ Si	105	$[(CpSi=CH_2)-2H]$	91.11
	C _S H9Si	97	ViSiCH ₂ CH ₂ CH ₂	36.31
	C ₅ H ₈ Si	96	[(ViSiCH ₂ CH ₂ CH ₂) — H)]	99.71
	C ₅ H ₇ Si	95	*	34.82
	C5H5Si	93	CpSi	55.10
	CeHs	77	$[(C_6H_6) - H]$	25,90
	CalleSi	70	ViSiCH ₂	36.82
	CaHeSi	69	Visi=CH	15.91
· · · · · · · · · · · · · · · · · · ·	CaHaSi	68	$[(ViSi=CH_2) - H]$	22.95
	CeHa	67	C ₅ H ₇	26.53
	CeHe	66	CeHe	98.03
	CeHe	65	CoHe	16 92
	Callasi	55	~5FF5 1/10:	10.54
· · · · · ·	C2H331	50	4 191 4 191	30.14 25 75
	Out ott at	003		33.13
	03n7, CH351	~3 ~~	CH2CH2CH3, CH3SI	01.09
	C3H3	39	C3H3	47.31
	C ₂ H ₄ , Si	28	H ₂ C=CH ₂	38.00

^a Die mit * gekennzeichneten Verbindungen zeigen z.T. Fragmentierungen, die sich von Folgeprodukten der Si=C-Zwischenstufe ableiten. Für Cp(Cl)SiCH₂CH₂CH₂ beziehen sich die Angaben auf das Isotop 35 Cl.

Fig. 4. ¹H-NMR-Spektrum von Me(Ph)SiCH₂CH₂CH₂; Einfluss der Phenylgruppe auf die SiMe-Resonanz.

und Phenylsilacyclobutane neben der üblichen Fragmentierung intramolekulare Folgereaktionen angezeigt werden, die von einer Silaethen-Zwischenstufe ausgehen. Diese Ergebnisse werden in späteren Mitteilungen behandelt.

2.2. Substitution von Cl durch Me₂N-Gruppen: Darstellung von Dimethylamino-silacyclobutanen. Dimethylaminosilacyclobutane sind aus mehreren Gründen von Bedeutung:

1. als Ausgangsverbindungen für die Synthese von Me_2N -substituierten Disilacyclobutanen (s. II. Mitteilung dieser Reihe [32]),

2. zur gezielten Darstellung von Monosubstitutionsprodukten des Silacyclobutans. Das Verfahren beruht auf der Möglichkeit, $Cl_2SiCH_2CH_2CH_2$ selektiv in (Me₂N)ClSiCH₂CH₂CH₂ zu überführen, die Si-Cl-Bindung zu alkylieren und die Si-N-Bindung mit HX oder anderen E-X-Verbindungen zu spalten,

3. zur potentiellen Erzeugung von mesomer stabilisierten Silaethenen durch Nutzung des einsamen Elektronenpaares am Stickstoff für $(p-d)\pi$ -Wechselwirkungen.

Der Ersatz eines oder beider Cl-Atome in den Silacyclobutanen R(Cl)-SiCH₂CH₂CH₂CH₂ bzw. Cl₂SiCH₂CH₂CH₂CH₂ gelingt schon bei -78° C in glatter Reaktion gemäss Gl. 7.

$$R(Cl)SiCH_2CH_2CH_2 + 2 HNMe_2 \xrightarrow{n-Pentan}{-78^{\circ}C} R(Me_2N)SiCH_2CH_2CH_2 + [Me_2NH_2]^+Cl^-$$
(7a)

$$Cl_{2}SiCH_{2}CH_{2}CH_{2} + 2 HNMe_{2} \xrightarrow{n-Pentan}{-78^{\circ}C} Cl(Me_{2}N)SiCH_{2}CH_{2}CH_{2} + [Me_{2}NH_{2}]^{+}Cl^{-}$$

$$\downarrow + 2 HNMe_{2} \qquad (7b)$$

$$(Me_{2}N)_{2}SiCH_{2}CH_{2}CH_{2}$$

Die Wahl des Syntheseweges wird im wesentlichen durch die Umsatzmengen bestimmt. Wegen der Hydrolysenempfindlichkeit der beteiligten Verbindungen sind die Reaktionen in abgeschlossenen Systemen durchzuführen. Bei kleinen Mengen ist die Verwendung von Glasampullen mit seitlich angesetzter Fritte angezeigt; für grössere Umsetzungen hat sich die Reaktion in Schliffapparaturen unter N₂-Atmosphäre bewährt. Die auf diesen Wegen gewonnenen Dimethylaminosilacyclobutane sind hydrolyseempfindliche, farblose, z.T. hochviskose Flüssigkeiten. Einzelheiten zur Präparation sind Tab. 15 im Exp. Teil zu entnehmen. Die Charakterisierung der Verbindungen gelingt in üblicher Weise durch spektroskopische (¹H-NMR, IR, Massen-Spektren) und analytische Untersuchungen. Die Daten sind in den Tab. 7 (¹H-NMR), 8 (IR) und 9 (Massen-Spektren) zusammengestellt. In die Tabellen sind die Daten des 1-Vinyl-1-chlor-silacyclobutans mit aufgenommen, das gemäss Gl. 8 dargestellt wurde.

$$Cl_{2}SiCH_{2}CH_{2}CH_{2} \xrightarrow{Me_{2}NH}_{n-Pentan} (Me_{2}N)CiSiCH_{2}CH_{2}CH_{2} \xrightarrow{ViMgCl}_{THF} (Me_{2}N)ViSiCH_{2}CH_{2}CH_{2} \xrightarrow{ViMgCl}_{THF} (Me_{2}N)ViSiCH_{2}CH_{2}CH_{2} (8)$$

$$PhPCl_{2} \downarrow Cl(Vi)SiCH_{2}CH_{2}CH_{2}$$

Die Spaltung der Si-N-Bindung ist in geringem Umfang von einer Abspaltung der Vinylgruppe begleitet. Diese Nebenreaktion dürfte sich bei Einhaltung einer Temperatur von 0°C weitgehend ausschalten lassen.

2.3. Substitution von Cl durch H bzw. D. Die Überführung von Si-Hal- in Si-H- bzw. Si-D-Gruppierungen gelingt durch Reduktion mit Lithiumalanat bzw. Lithiumalanat- d_4 nach Gl. 9:

$$X_2SiCH_2CH_2CH_2 + 1/2 \text{ LiAlH}_4(D_4) \rightarrow H_2SiCH_2CH_2CH_2 \text{ bzw. } D_2SiCH_2CH_2CH_2CH_2$$

$$R(X)SiCH_2CH_2CH_2 + 1/4 LiAlH_4(D_4) \rightarrow$$

TABELLE 7

R(H)SiCH₂CH₂CH₂ bzw. R(D)SiCH₂CH₂CH₂

Die Hydrierungsreaktionen verlaufen schon zwischen -5 und +5°C ausreichend

¹ H-NMR-SPEKTREN Me ₂ N	-SUBSTITUI	ERTER MONO	DSILACYCLO	BUTANE ^a		
Verbindung	δ (H) (ppm	.)				$J_{\alpha\beta}$
,	MeSi	Vi	Me ₂ N	α-CH ₂	β-CH ₂	(Hz)
Me(Me ₂ N)SiCH ₂ CH ₂ CH ₂ Cl(Me ₂ N)SiCH ₂ CH ₂ CH ₂	0.27 (1) —	-	2.56 (1) 2.40 (1)	1.38 (M) 0.81 bis	1.38 (M) 1.71 (M)	ь 5 5
(Me ₂ N) ₂ Si <u>CH₂CH₂CH₂</u> Vi(Me ₂ N) <u>SiCH₂CH₂CH₂</u> Vi(Cl) <u>SiCH₂CH₂CH₂</u>	_ _ _	 5.98 (M) 6.02 (M)	2.58 (1) 2.48 (1) —	1.41 (M) 1.16 (3) 1.33 (M)	1.78 (M) 1.57 (M) 2.07 (M)	7.7 8.0

^a Lösungsmittel: C_6D_6 ; ca. 30% ige Lösung; Innerer Standard: TMS oder C_6H_6 ; Angaben in (); Multiplizitäten; (M) komplexes Signal höherer Ordnung.^b Wegen komplizierter Spinsysteme $J_{\alpha\beta}$ nicht direkt bestimmbar.

(9)

Me(Me2N)SICH2CH2CH2	CI(Me2N)SICH2CH2CH2	(Me2N)2SiCH2CH2CH2	VI(Mo2N)SICH2CH2CH2	VI(CI)SICH2CH2CH2	Zuordnung
2953 m	2060 ss	2963 s	3055 m 2964 ss	3063 m 2972 ss	
2918 m	2934 88 2000 68			2940 ss	•
	2878 58		2865 88	2870 s	ν(CH ₂ , CH ₃)
2863 m	2864 s	2862 в			•
2787 m	2606 5	2782 a	2796 s		
			1693 w		
- - -				1590 m	v(C=C)
	1487 m	1485 s	1486 m	1480 w	
	1465 m	1466 s	1466 m		· ····
	1450 m	1445 5		1446 m	-
	1406 w	1403 m	1403 s	1403 s	
	1394 m	1388 s		1386 s	6(CH ₃ , CH ₂)
1200 s	1296 55	1296 ss, 1292 s	1289 в		
1248 s	1258 w	1210 m		1264 w	•

IR-DATEN Me₂N-SUBSTITUIERTER MONOSILACYCLOBUTANE UND DES VI(CI)SICH₂CH₂CH₂^d

TABELLE 8

,

•

1179 s	1174 8	1146 m	1179 s	1170 8	v(Ring)
1118 s	1123 s	1126 s	1120 8	1120 s	Vus(NC2)
	1072 m	1069 s	1072 8	1067 s	1
			1023 w	1008 8	p.Y(CH3. CH2)
908 88	901 ss	992 ss	991 ss	960 s	ν _s (NC ₂)
903 w	914 m	921 m	955 m	911 m	v, b (Ring)
	889 m	901 m	921 w	893 s	
864 m	852 s.	860 s	8.56 s	857 s	
•		817 m	811 w	820 m	δ(CH ₃)
781 s		5 °		765 w	
722 m	717 88	720 85	721 88	721 88	v(SIN)
		693 s	694 88	684 s	Vas(SiC)
678 w	608 m	670 m			
643 m		620 m		634 w	ν ₈ (SiC)
		600 m		590 ss	I
	564 s	558 a	521 w	520 53	v(SICI)
	512 s	483 s	485 w	500 w	ν,δ (Ring)
	435 w			460 w	
والمراغب والمراجعة والمتعادية والمحبج بالمتعادية المراجع والالالمانية والمراجعة والمحبوب		وتبرق والافتادة فالمناطئين ووافلاته والمترين ويوفي والمنافعة والمراجع			

^a Bezeichnungen: w = schwach, m = mittelstark, s = stark, ss = schr stark. Die Monosilacyclobutane wurden in Substanz auf KBr-Fenstern vermessen (Kapiliare Schichtdicke),

41

42

TABELLE 9

MASSENSPEKTROMETRISCHE FRAGMENTIERUNG Me2N-SUBSTITUIERTER MONOSILACYCLO-BUTANE UND DES Vi(Cl)SiCH2CH2CH2^a

Verbindung	Summenformel der positiven Ionen	m/e	(sinnvolle Molekül- struktur)	Rel. Intensi- täten (%)
Me(Me2N)SiCH2CH2CH2	CcH1cSiN	129	M	19.19
	C ₅ H ₁₂ SiN	114	MeaNSiCHaCHaCHa	5.26
	CAHIISIN	101	Me(MeaN)Si=CHa	76.84
	CoHoSiN	73	MeaNSiH	21.58
	CaHeSiN	72	MeaNSi	41.05
	CaHoN	59	MeaN	100
	CoHeN	45	MeaNH	56 84
	CHoSi	43	CHASI	98.49
•	$C_{3}H_{6}$, SiN, SiCH ₂	42	C ₃ H ₆ , SiN, SiCH ₂	57.89
OVAL- NUT OIL OIL OIL				
CI(Me ₂ N)SICH ₂ CH ₂ CH ₂	C ₅ H ₁₂ NSiCl	149		3.91
	CINENSICI	121	CI(Me ₂ N)Si=CH ₂	6.43
	C3H5SiCI	104	CISICH ₂ CH ₂ CH ₂	49.77
	CSiCl	75	CSiCl	26.79
	C ₃ H ₉ N	59	Me ₃ N	44.65
Vi(Me ₂ N)SiCH ₂ CH ₂ CH ₂	C7H15SiN	141	М	14.67
	C ₅ H ₁₂ SiN	114	Me2NSiCH2CH2CH2	21.47
	C ₅ H ₁₁ SiN	113	Me ₂ N(Vi)Si=CH ₂	20.20
	C ₄ H ₉ SiN	99	Me ₂ N(Vi)Si	6.85
	C ₅ H ₈ Si	96	ViSiCH2CH2CH2	98.72
	C ₅ H ₇ Si	95	[(Vi(SiCH ₂ CH ₂ CH ₂) – H]	55.62
	CaHoSiN	87	MeoNSiCH ₂	54.85
	C ₂ H ₇ SiN	73	Me ₂ NSiH	14.01
	C ₂ H ₆ SiN	72	MeaNSi	100
	C ₂ H ₅ SiN	71	[(MeoNSi - H]	82.75
	CaHeSi	70	ViSiCH ₂	61.15
	C ₃ H ₅ Si	69	ViSi=CH2	23.72
	C ₃ H ₄ Si	68	$[(ViSi=CH_2) - H]$	34.28
	C ₃ H ₃ Si	67	ViSiC	21.37
	CHASIN	58	CH3SiNH	13.48
	CaHaSi	55	ViSi	93.27
	C ₂ H ₂ Si	53	I(ViSi) - HI	31 28
	CaHaN	45	MeaNH	44.79
	C ₂ H ₆ N	44	MeaN	94.20
	C ₃ H ₇	43	CH ₂ CH ₂ CH ₃	82.30
	CaHe	42	CH ₃ CH=CH ₂ : SiN	100
	CaHa	41	$[(CH_3CH=CH_2) - H]$	88.79
	CaHA	40	$(CH_{3}CH=CH_{2}) - 2H_{1}$	26.42
	CaHa	39	CaHa	50 26
	C ₂ H ₄	28	$H_2C=CH_2$	100
VICUSICHACHACHA	Callasici	120	76	2 50
vicei, siem zem zem zem z	Callesici	105		3.35
		105		10.10
	C-H-S:	104		10.41
		96	$\left[\left(\sqrt{151CH_2CH_2CH_2}\right) - H\right]$	100
		78	MeSiCi	36.75
	~3n651	10	. VISIME	30.78
		63	SICI	92.85
	U2H3D1	55	VISI	61.75
	C2H51	53	[(ViSi) - 2H]	23.25
	CH351	43	MeSi	32.47
	U3H6	42	CH ₃ CH=CH ₂	21.00
	U3H5	41	$[(CH_3CH=CH_2) - H]$	16.87
	C3H3	39	C3H3	20.78

^a Bei den Vinylderivaten treten Fragmente auf, die als Folgeprodukte der Si=C-Zwischenstufe anzusehen sind. Angaben für Vi(Cl)SiCH₂CH₂CH₂ sind auf ³⁵Cl bezogen.

rasch und liefern die Produkte in guten Ausbeuten. Einzelheiten über eingesetzte Mengen und Reaktionsbedingungen finden sich in Tab. 16 im Exp. Teil.

Die Produkte sind leichtflüchtige, farblose und luftempfindliche Flüssigkeiten; sie werden in der üblichen Weise durch analytische und spektroskopische Untersuchungen charakterisiert und durch Vergleich mit Literaturdaten identifiziert. Im Zusammenhang mit der pyrolytischen Erzeugung von Silathenen werden für Vergleiche der IR-Spektren mit denen der zugehörigen Monosilacychobutane die Spektren der bei -190°C kondensierten Proben benötigt [30]. Sie zeigen ein komplizierteres Bandenmuster als die Proben bei Raumtemperatur (Tab. 10), ein Effekt, der auf die Fixierung der Moleküle im Kristallgitter zurückzuführen sein dürfte.

Experimentelles

Wegen der Hydrolyseempfindlichkeit vieler Ausgangsverbindungen und Produkte wurden die Umsetzungen in trockenen Lösungsmitteln und in der Regel unter Luftausschluss (Stickstoffatmosphäre) durchgeführt.

Die IR-Spektren wurden an den reinen Verbindungen bei kapillarer Schichtdicke mit dem Gitterspektrometer 325 der Firma Perkin-Elmer, die NMR-Spektren mit dem Modell WH 90 der Firma Bruker bzw. T60 der Firma Varian, die Massenspektren mit dem Modell CH 4B der Firma Varian MAT, gekoppelt mit dem Datensystem SS100, registriert. Aufnahmebedingungen: Elektronenstrom 1 mA bzw. 300 μ A; Ionenbeschleunigungsspannung 3 kV; Ionisierungsenergie 70 eV; Ionenquellentemperatur 180°C.

Darstellung der γ -Halopropyl-chlorsilane

Die Synthese dieser Vorstufen für die Darstellung der Monosilacyclobutane erfolgt in Anlehnung an verschiedene in der Literatur beschriebene Verfahren {9,12}. Die von uns eingesetzten Mengen, die Reaktionsbedingungen und die Ausbeuten sind in Tab. 11 wiedergegeben.

Darstellung der Monosilacyclobutane Me_nCl_{2-n}SiCH₂CH₂CH₂

Auch die Ringschlussreaktion der γ -Halopropylchlorsilane wird in Anlehnung an Literaturvorschriften [13] durchgeführt. Bei Einhaltung bestimmter Bedingungen und Verwendung von relativ geringen Mengen Diethylether als Lösungsmittel werden bei Ansätzen von 3 Mol Ausbeuten bis zu 80% an Monosilacyclobutan erzielt, Tab. 12 gibt die Reaktionsbedingungen und Ausbeuten wieder.

Darstellung von Silacyclobutanen mit organischen Substituenten R

Organosubstituierte Silacyclobutane sind aus den Chlorderivaten durch Umsetzung mit LiR- oder RMgX-Verbindungen zugänglich. Da diese Syntheseverfahren zu den Standardmethoden der metallorganischen Chemie zählen, wird hier auf eine Versuchsbeschreibung verzichtet. Tab. 13 gibt einen Überblick über die von uns durchgeführten Substitutionsreaktionen; sie enthält Informationen über Ansatzmengen, Reaktionsbedingungen, Ausbeuten und Siedepunkte der Produkte. In Tab. 14 sind die Analysendaten der Verbindungen zusammengefasst.

Zum Syntheseverfahren werden hier nur Hinweise auf die Massnahmen

TABELLE 10

•

IR-SPEKTREN H- UND I	D-SUBSTITUIERTER MON	OSILACYCLOBUTANE ^a		
Н ₂ SICH2CH1CH2 (—190°С)	D ₂ SicH ₂ CH ₂ CH ₂ (—190°C)	Менбісн ₂ сн ₂ сн ₂ (—190°с)	МенSiCH ₂ CH ₂ CH ₂ CH ₂ (25°С)	Zuordnung
3048 m 2958 s 2908 s 2848 m	2074 s 1918 s 2850 s	2056 s 2015 s 2835 s	2072 ss 2878 ss	v(CH)
2138 ss 1631 s		2116 ss	2122 38	ν(SiH)
	1563 ss 1540 ss			v(SiD)
1465 m 	1469 s 	1460 m 1460 m		
1419 m 1419 m	1418 m	1414 B	1409 s	o(CH2, CH3)
1387 m	1394 m 1330 w	1382 w, 1370 w 1330 w		
1188 m	1242 w	1247 s 1211 w, 1199 w, 1183 w	1267 ss(br); 1265 ss(br); 1247 ss(br) 1218 w	

-

÷.

: į

I

	v(Ring)			p,7(CH2, CH3)	(SiH)	v,b(Ring)			$\rho_{\gamma}(SiH_2)$	1		N	v(SiC)			ν,δ (Ring)	
	1126 ss	1064 m	1004 m			914 ss(br)		821 ss (br)	~	781 m	727 89		G 59 B	625 w			
	1121 8	1067 s	1005 s	968 as	944 s	919 as	868 33	853 m	B10 is	757 m	724 B	67Б в	647 a	613 m	505 m		
	1120 5	1064 m	1000 m		924 s	900 s	864 s	821 m	794 s	744 m	711 85	690 88	664 s, 652 s			647 8 497 w 420 w	
1155 s	1121 8	1068 m, 1040 m	1008 m	991 s	940 65	913 ss	873 s	832 B	804 88	764 s	736 s, 724 m	672 s	6b2 m	589 s		542 s	

ż

^a In einer späteren Mitteilung dieser Reihe [30] werden für Vergleiche die IR-Spektren der bei —190°C kondensierten Proben benötigt. Das Bandenmuster wird durch Aufhebung von Entartungen im Kristaligtter komplizierter als bei Raumtemperatur. (s. Spektrum des Me(H)SICH2CH2CH2 bei —190 und 25°Ci). Intensitäten: w = schwach, m = mittelstark, s = stark, ss = schr stark.

	HALOPROPYLSILANE Men Cl _{3~n} SiCH ₂ CH	
	۲-۲	
-	DER	
BELLE 1	NTHESE	
TA	SΥ	

 l_2 CH₂X (X = Cl, Br; n = 0-2); EINGESETZTE MENGEN, BEDINGUNGEN, PRODUKTE UND AUSBEUTEN

Nato area V						
Reaktionskomponenten (g/mol)		Reaktionstemperatur (°C)	Reaktionsdauer (Std.)		Reaktionsprodukt (g/mol/%)	Sjedepunkt (°C/mmHg)
Allylhalogenid	Silan		Zutropfen	Rühren		
H2C=CHCH2Cl	Cl ₃ SIH	7580	24	12	SiCl ₄ 272.9/1.604/26.3 Cl ₃ SiCH ₂ CH ₂ CH ₃ 57.36/0.323/5.3	56/760 124/760
421/5.5	829/6.1				Ol ₃ SiCH ₂ CH ₂ CH ₂ Cl 885/4.17/68.4	32/10 ⁻⁰ 180181/760
H2C=CHCH2C1 637/8.33	MeSICl2H 11 50/10	6 ប	24	12	MeSICI3 320.1/2.14/21.4 Cl2siMeCH2CH2CH3200.8/1.66/16.6 MeSICI2CH2CH2CH2CH2CH2CH1188/6.2/62	66/760 145/760 30/10 ⁻³
H2C=CHCH2CI 638/8.32	Me ₂ SiCiH 946/10	5055	24	12	Me2SICI2 265.62/1.98/19.8 CISMe2CH2CH2CH3 508/3.72/37.2 Me2SICICH2CH2CH2CH2CH2CH3CH3/43	70/760 127/750 27/10 ⁻³
H2C=CHCH2Br 340/2.8	Cl ₃ SiH 390/2.9	6670	24	48	Cl ₃ SiBr 36/0.1 ⁷ /b.9 Cl ₃ SiCH ₂ CH ₂ CH ₃ 169/0.96/32.5 Cl ₃ SiCH ₂ CH ₂ CH ₂ Br 458/1.78/61.38	80-81/760 121-124/760 204/760 50/10-3
H2C=CHCH2Br ^a	MeSICl ₂ H	5055	24	48	(MeCl ₂ SiBr + Gemische \MeSiCl ₂ CH ₂ CH ₃ CH ₃ ~10% \MeSiCl ₂ CH ₂ CH ₂ CH ₂ Br ~15%	~103/760 ~103/760 126/765 ~35/10 ⁻³
H2C=CHCH2Br ^a	Me2SICIH	50—55	24	48	(Me₂SICIBr + Gemische Me₂SICICH₂CH₂CH3 ~10% Me₂SICICH2CH2CH2Br ~20%	~108/760 127/750 26/10 ⁻³
^a Bei diesen Umsetzung. [9] auf ca. 60% gesteige	en werden im wesent rt werden.	lichen die Ausgangsstoffe zu	råckerhalten. Die Au	sboute an den	gewünschten 7-Brompropylsilanen kann ni	ch Lane

.

-

TABELLE 12

Reaktionskomponenten		Reaktionsdau	er	Reaktionsprodukt	Siedepunkt
Silan (g/mol)	Mg-Puder (g/mol)	Zutropfen (Std.)	Rühren (Std.)	(g/m0i/‰)	mmHg)
				Cl2SiCH2CH2CH2	115/760
Cl ₃ SiCH ₂ CH ₂ CH ₂ Cl	208/8.6	24	48	318/2.25/79	
605/2.85					
				MeClŚiCH ₂ CH ₂ ĊH ₂	105/760
MeSiCl ₂ CH ₂ CH ₂ CH ₂ Cl	219/9	24	48	257/2.13/71	
574.8/3.0					
				Me ₂ SiCH ₂ CH ₂ CH ₂	80/760
Me ₂ SiClCH ₂ CH ₂ CH ₂ Cl	219/9	24	48	153/1.53/51	
513.3/3.0					

DARSTELLUNG DER SILACYCLOBUTANE Me_nCl_{2-n} SiCH ₂ CH ₂ CH ₂ ($n = 0$ —2); EINGESET	ZTE
MENGEN, REAKTIONSBEDINGUNGEN, AUSBEUTEN UND SIEDEPUNKTE DER PRODU	KTE

gegeben, die zur Optimierung der Ausbeute angewendet wurden; die Buchstaben (a) bis (f) in Tab. 13 beziehen sich auf die folgenden Varianten:

(a) Die Chlorsilanlösung wird vorgelegt und der metallorganische Reaktionspartner wird unter Rühren zugetropft,

(b) die Zugabe erfolgt bei verschiedenen Temperaturen,

(c) die Reaktionsmischung wird zur Vervollständigung der Umsetzung bei gleicher oder erhöhter Temperatur einige oder mehrere Stunden gerührt;

(d) bei Alkylierungsreaktionen in geschlossenen Ampullen wird die RM-Verbindung einpipettiert, das Chlorsilan im Vakuum einkondensiert und die Ampulle nach dem Abschmelzen langsam von -78°C auf Raumtemperatur gebracht,

(e) die Reaktionsmischung wird von den ausgefallenen Salzen abkondensiert und einer fraktionierten Destillation unterworfen (z.T. im Vakuum),

(f) die Trennung von Lösung und Feststoffen erfolgt durch Filtration mit Hilfe einer N_2 -Schutzgasfritte; der feste Rückstand wird mehrfach mit ca. 20 ml Lösungsmittel nachgewaschen, die vereinigten Filtrate werden destillativ aufgearbeitet.

Darstellung von Me₂N-substituierten Monosilacyclobutanen

Die Synthese von Me₂N-substituierten Silacyclobutanen erfolgt in Anlehnung an früher beschriebene eigene Verfahren in speziellen abgeschlossenen Glasapparaturen [31]. Von besonderer Bedeutung ist dabei, dass eine selektive Monosubstitution möglich ist, so dass, ausgehend von $Cl_2SiCH_2CH_2CH_2$, durch anschliessende Umsetzung mit metallorganischen Reagenzien die verschiedensten $R(Me_2N)SiCH_2CH_2CH_2$ -Verbindungen zugänglich werden. Da aus diesen durch Spaltung der Si-N-Bindung die funktionelle SiCl-Gruppe regeneriert werden kann, eröffnen solche Derivate prinzipiell den Zugang zu einer Vielzahl gemischt substituierter Verbindungen des Typs $R(R')SiCH_2CH_2CH_2$. Als Spaltungsreagenzien haben sich Phosphorchloride des allgemeinen Typs R_nPCl_{3-n} bewährt. Die Auswahl geschieht unter dem Aspekt der möglichst einfachen Abtrennbarkeit des gewünschten Produktes. Man sorgt durch geeignete Wahl von R und *n*

.usgungsverb. . ¹ R ² SiCH ₂ CH ₂ CH ₂ [/mol)	Metullorg. Partner (mol)	Lösungs- mittol (ml)	Bedingungen ^a	Auf- arboi- tung	Produkt (g/mol)	Ausbeute (%)	Siedepunkt (°C/mmHg)
1 R ²							
le CI	MeMgI	Et2O	a; b: 0°C	G	Me ₂ SICH ₂ CH ₂ CH ₂ CH ₂	84	79-80/760
0/0.5	0.5	250	c: 20°C/3 h		42/0.42		
le CJ	LiMe	Et ₂ O	ď	e	Me2SICH2CH2CH2	92	79-80/760
0/0.5	0.5	200			46/0.46	1	
le C	VIMBCI	THF	a; b: 20°C	0	Me(VI)SICH2CH2CH2	78	112/760
0/0.5	0,5	250	c: 67°C/3 h		43.6/0.4		-
le C	NaCp	THF	a; b: 26°C	e	Me(Cp)SiCH ₂ CH ₂ CH ₂	72.6	30/10-3
0/0.5	0.5	200	c: 26°C/3 h		54.4/0.36		
Te G	PhMgBr	Et ₂ O	a; b: 25°C	o	Me(Ph)SiCH2CH2CH2	89	62/5
0/0.5	0.5	250	c: 37°C/4 h		72/0.45		-
1	MeMgI	Et2O	a; b; 20°C	9	Me ₂ SICH ₂ CH ₂ CH ₂	68	79-80/760
0.6/0.5	1.0	500	c: 37°C/3 h		34/0.34	1	
1	LIMe	Et2O	p	0	Me ₂ SiCH ₂ CH ₂ CH ₂	85	19-80/760
0.5/0.5	1.0	200			42.5/0.43		
1 1	VIMECI	THF	a	9	VI2SICH2CH2CH2	62	138140/760
0.5/0.5	1.0	400	c: 67°C/3 h		38.5/0.31		
0	PhMgBr	Et2O	ы; b: 0°C	ų	Ph(CI)SiCH2CH2CH2	80	70-75/10-3
0.5/0.5	0.5	260	C: 25°C/5 h		73/0.4		
5	PhMgBr	Et2O	a; b: 20°C	ł	Ph2SiCH2CH2CH2	81	110116/10-3
0.5/0.5	1.0	260	c: 37°C/8 h		91/0.4		
b C	ViMgCI	THF	a; b; 20°C	J	Ph(Vi)SiCH2CH2CH2	72	73/10 ⁻³
5.6/0.25	0.25	100	c: 67°C/4 h		63/0.36	-	
0	NaCp	THF	a; b: 20°C	e	Cp(Cl)SICH ₂ CH ₂ CH ₂	48	35/10 ⁻³
5.3/0.25	0.25	100	c: 25°C/10 h		20.6/0.12		
0	VIMECI	THF	a; b; 20°C	9	Cp(VI)SICH2CH2CH2	82	32-36/10-3
6.5/0.25	0.25	120	c: 67°C/2 h		33/0.2		•

SYNTHESEN R-SUBSTITUTIERTER MONOSILACYCLOBUTANE R 18²SICH-CH-CH-CH (R = M° V) Ph. Ch

TABELLE 19

48

· • •

TABELLE 14

ANALYSENDATEN VON MONOSILACYCL	OBUTANEN R ¹ R	² ŚiCH ₂ CH ₂ ĊH ₂ ⁴
--------------------------------	---------------------------	---

RI	R ²	C (%)	H (%)	N (%)	M ^b	
Cl	Cl	25.59	4.29		140	
		(25.53)	(4.26)		(141.07)	
Me	Cl	39.88	7.51	· -	120	
		(39.83)	(7.47)		(120.65)	
Me	Ме	60.07	11.96	—	100	
		(60.00)	(12.00)		(100.24)	
Me	Vi	64.31	10.68		112	
		(64.29)	(10.71)		(112.25)	
Ме	Рь	74.11	8.62	-	162	
		(74.07)	(8.64)		(162.31)	
Vi	Vi	67.85	9.74	_	124	
		(67.74)	(9.68)		(124.26)	
Ph	Cl	57.67	8.49		182	
		(57.60)	(8.53)		(182.72)	
Ph	Ph	80.41	7.19	_	224	
		(80.36)	(7.14)		(224.38)	
Ph	Vi	75.89	8.11	_	174	
		(75.86)	(8.05)		(174.32)	
Me	Ср	72.07	9.38		150	
	-	(72.00)	(9.33)		(150.30)	
Ср	Cl	56.35	6.49	—	170	
		(56.30)	(6.45)		(170.71)	
Ср	Vi	74.11	8.72	-	162	
		(74.07)	(8.64)		(162.31)	
Ме	Me ₂ N	55.77	11.67	10.81	129	
		(55.81)	(11.63)	(10,85)	(129.28)	
Cl	Me ₂ N	40.19	8.08	9.41	149	
	~	(40.13)	(8.03)	(9.36)	(149.70)	
Me ₂ N	Me ₂ N	53.21	11.42	17.70	158	
		(53.16)	(11.39)	(17.72)	(158.32)	
Vi	Me ₂ N	59.53	10.67	9.98	141	
		(59.57)	(10.64)	(9.93)	(141.29)	
Vi	Cl	45.31	6.82	_	132	
		(45.28)	(6.79)		(132.67)	
п	н	49.94	11.15		72	
_	-	(50.00)	(11.11)		(72.18)	
D	D	48.23	13.51	—	74	
		(48.65)	(13.51)		(74.26)	
ме	н	55.87	11.69		86	
a .	**	(55.81)	(11.63)		(86.21)	
Cp	н	70.62	8.78	-	136	
<u>a_</u>	-	(70.59)	(8.82)		(136.27)	
Ср	D	69.69	9.73	<u> </u>	137	
		(10.07)	(9.49)		(137.28)	

^a Berechnete Werte in Klammern. ^b Molmasseangaben beziehen sich auf ³⁵Cl, berechnete Werte auf das natürliche Isotopenverhältnis.

dafür, dass das Produkt der Me₂N-Übertragung $R_n P(NMe_2)_{3-n}$ einen deutlich höheren oder niedrigeren Siedepunkt aufweist als das gewünschte Chlorsilan. Die Ergebnisse der Synthesen aminierter Silacyclobutane sind in Tab. 15 zusammengefasst.

Ausgangsverb. (g/mol)	Reaktions- partner (g/mol)	Verfahren Temperatur (°C)	Lösungs- mittel	Auf- arbeitung ^a	Produkt (g/mol/%)	Sjedepunkt (°C/mmHg)
Me(CI)SiCH2CH2CH2 60/0.5	Me2NH 46/1.0	Ampulle -78 bis 20	n-Pentan	A, B	Me(Me2N)SICH2CH2CH2 46.5/0.36/72	160/780
CI ₂ SICH ₂ CH ₂ CH ₂ CH ₂	Me2NH A5/1 D	Kolben —20	n-Pentan	А, В	CI(Me2N)SICH2CH2CH2 FDID 33/66	164/760
CI2SICH2CH2CH2 70.6.0.5	Me2NH	Koben 20 his 20	n-Pentan	Α, C	(Me2N)2SICH2CH2CH2 49/0 31/62	60/10 ⁻³
Me2N(CI)SICH2CH2CH2	VIMBCI	Kolben	тнг	А, В	Me2N(VI)SICH2CH2CH2 39.0.09.8E	164/760
10/0.21 Me2N(VI)SICII2CH2CH2 30/0.21	94/0.33 PhPCl ₂ 59,5/0.33	L U Kolben 30	n-Pentan	D	27/0.2/95 27/0.2/95	119- 122/760
^a A = Abtrennung der Ammon im Hochvakuum (10 ⁻³ mbar);	niumsalze mittels (D = Kondensatio	Schutzgasfritte; B n im Hochvakuum	= fraktionierte I	Jestillation des Filtr	ats bei 760 mmHg; C = fraktionieri	te Destillation des Produktes

synthese me₂n-substituierter monosilacyclobutane; eingesetzte mengen, reaktionsbedingungen, produkte und Ausbeuten

TABELLE 15

.

TABELLE 16

Verbindung (g/mol)	Hydrierungs- mittel (g/mol)	Lösungs- mittel (ml)	Produkt (%/g/mol)	Siedepunkt (°C/mmHg)
Cl2SiCH2CH2CH2	LiAlH4	n-Bu ₂ O	H2SiCH2CH2CH2	45-46/760
(50.8/0.36)	(7.0/0.185)	130	60/15.5/0.215	-
Cl2SiCH2CH2CH2	LiAlD ₄	n-Bu ₂ O	D2SiCH2CH2CH2	45-46/760
(43.5/0.31)	(6.0/0.15)	130	58/12.8/0.173	-
Me(Cl)SiCH2CH2CH2	LiAlH ₄	n-Bu ₂ O	Me(H)SiCH2CH2CH2	6566/760
(44.4/0.37)	(3.570.0925)	100	64/20.36/0.237)	-
Cp(Cl)SiCH ₂ CH ₂ CH ₂	LiAlH ₄	Et ₂ O	Cp(H)SiCH2CH2CH2	100-120/760
(1.97/0.0116)	(1.75/0.0463)	50	61/0.962/0.71 X 10 ⁻²	•
Cp(Cl)SiCH2CH2CH2	LiAlD ₄	Et ₂ O	Cp(D)SiCH2CH2CH2	100-120/760
$(1.59/0.934 \times 10^{-2})$	(1.5/0.0375)	50	60/0.77/0.56 X 10 ⁻²	

SYNTHESE VON H bzw. D-SUBSTITUIERTEN MONOSILACYCLOBUTANEN; EINGESETZTE MENGEN; BEDINGUNGEN, AUSBEUTE UND SIEDEPUNKT DER PRODUKTE

Darstellung von H- und D-substituierten Monosilacyclobutanen

Die Hydrierung chlorsubstituierter Silacyclobutane erfolgt in Anlehnung an Syntheseverfahren von Laane, der die Darstellung des $H_2SiCH_2CH_2CH_2CH_2$ bzw. $D_2SiCH_2CH_2CH_2CH_2$ beschreibt [9]. Me(H)SiCH_2CH_2CH_2 und Cp(H)- bzw. Cp(D)-SiCH_2CH_2CH_2 werden in entsprechender Weise aus ihren Chlorderivaten synthetisiert. In Tab. 16 sind die eingesetzten Mengen, Reaktionsbedingungen, Ausbeuten und Siedepunkte der Produkte wiedergegeben,

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und den Firmen Bayer AG, Leverkusen und Dynamit Nobel AG, Troisdorf für die finanzielle bzw. sachliche Unterstützung dieser Untersuchungen. Unser Dank gilt ausserdem dem Institut für Organische Chemie und Biochemie der TH Darmstadt für die Durchführung der massenspektrometrischen und analytischen Untersuchungen.

Literatur

- 1 L.V. Vilkov, V.S. Mastryukov, Y.V. Baurova, V.M. Vdovin und P.L. Grinberg, Dokl. Akad, Nauk S.S.S.R., 177 (1967) 1084 [1147].
- 2 J. Laane und R.C. Lord, J. Chem. Phys., 48 (1968) 1508.
- 3 N.S. Nametkin, V.M. Vdovin, L.E. Gusel'nikov und V.I. Zav'yalov, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1966) 584 [563].
- 4 N.S. Nametkin, L.E. Gusel'nikov, V.M. Vdovin, P.L. Grinberg, V.I. Zav'yalov und V.D. Oppengeim, Dokl. Akad. Nauk S.S.S.R., 171 (1966) 630 [1116].
- 5 T.J. Barton und E. Kline, J. Organometal. Chem., 42 (1972) C21.
- 6 P. Boudjouk und L.H. Sommer, J. Chem. Soc., Chem. Commun., (1973) 54.
- 7 M. Elsheikh, N.R. Pearson und L.H. Sommer, J. Amer. Chem. Soc., 101 (1979) 2491.
- 8 Diplomarbeit N. Auner, Darmstadt 1975.
- 9 J. Laane, J. Amer. Chem. Soc., 89 (1967) 1144.
- 10 A.G. Smith, J.W. Ryan und J.L. Speier, J. Org. Chem., 27 (1962) 2190.
- 11 Z.V. Belyakova, M.G. Fomerantseva und Z.V. Belikova, Zh. Obshch. Khim., 44 (1974) 2439.
- 12 J.W. Ryan, G.K. Menzie und J.L. Speier, J. Amer. Chem. Soc., 82 (1960) 3601.

- 13 R. Damrauer, Organometal. Chem. Rev., A, 8 (1972) 67.
- 14 L.H. Sommer und G.A. Baum, J. Amer. Chem. Soc., 76 (1954) 5002.
- 15 V.M. Vdovin, N.S. Nametkin und P.L. Grinberg, Dokl. Akad. Nauk S.S.S.R., 150 (1963) 799 [449].
- 16 D.R. Weyenberg und L.E. Nelson, J. Org. Chem., 30 (1965) 2618.
- 17 D. Seyferth, R. Damrauer, S.B. Andrews und S.S. Washburne, J. Amer. Chem. Soc., 93 (1971) 3709.
- 18 A. Mendel, J. Organometal. Chem., 6 (1966) 97.
- 19 R. Damrauer, R.A. Davis, M.T. Burke, R.A. Karn und G.T. Goodman, J. Organometal. Chem., 43 (1972) 794.
- 20 H. Gilman und W.H. Atwell, J. Amer. Chem. Soc., 86 (1964) 2687.
- 21 L.C. Costa und G.M. Whitesides, J. Amer. Chem. Soc., 99 (1977) 2390.
- 22 N.S. Nametkin und V.M. Vdovin, Izv. Akad. Nauk S.S.S.R., Ser. Khim., (1974) 1153.
- 23 P. Jutzi und P. Langer, J. Organometal, Chem., 132 (1977) 45.
- 24 U. Wannagat, H. Bürger und E. Ringel, Monatsh. Chem., 93 (1962) 1363.
- 25 J.W. Emsley, J. Feeney und L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, Oxford, 1965.
- 26 H. Günther, NMR-Spektroskopic, G. Thieme-Verlag, Stuttgart, 1973, S. 55, 82, 99.
- 27 Y. Kiso, K. Tamao und M. Kumada, J. Organometal. Chem., 76 (1974) 105.
- 28 B.G. McKinnie, N.S. Bhacca, F.K. Cartledge und J. Fayssoux, J. Amer. Chem. Soc., 96 (1974) 2637.
- 29 H.P. Fritz und C.G. Kreiter, J. Organometal. Chem., 4 (1965) 313.
- 30 N. Auner und J. Grobe, Z. Anorg. Allg. Chem., im Druck.
- 31 J. Grobe und U. Möller, J. Organometal. Chem., 33 (1971) 13.
- 32 N. Auner und J. Grobe, J. Organometal. Chem., im Druck.